

Education

Projects

Volunteering

Sri Harsha Turlapati

Research Fellow, NTU

Learning from human (haptic) demonstrations

Valve turning with axial misalignment

Wheel bearing inspection

Mixed2real frameworks

Movement synthesis

M1: SENSORIZED GRIPPER

Built using off the shelf parts

Turlapati, Sri Harsha, Gautami Golani, Mohammad Zaidi Ariffin, and Domenico Campolo. "Sensorized gripper for human demonstrations." *arXiv preprint arXiv:2503.14855*(2025).

Anybody can program a robot

https://www.straitstimes.com/singapore/consumer/new-research-centre-in-ntu-to-further-drive-robotics-role-in-spores-development

New research centre in NTU to further drive robotics' role in S'pore's development

M2: TELEOPERATED ROBOTS

Kana, Sreekanth, Juhi Gurnani, Vishal Ramanathan, Mohammad Zaidi Ariffin, **Sri Harsha Turlapati**, and Domenico Campolo. "Learning compliant box-in-box insertion through haptic-based robotic teleoperation." *Sensors* 23, no. 21 (2023): 8721.

Jeffrey Williams (NASA Astronaut)

(a) Human user operating the master–slave teleoperated system.

(b) Teleoperation control block diagram.

ON HAPTIC SENSING

How can you use haptic sensors on the robot hands, and joints to infer task state?

Planar dual arm manipulation

Remote teleoperation

Human demonstration of manipulation task

Contact estimation from force measurement

Turlapati, Sri Harsha, and Domenico Campolo. "Towards haptic-based dual-arm manipulation." *Sensors* 23, no. 1 (2022): 376.

(c) Object orientation

Torque sensed at every joint is a sum of intrinsic dynamics

We model the sensed torque as a function of joint position, velocity and acceleration

$$\tau_{robot} = \Phi(q, \dot{q}, \ddot{q})w$$

Wheel bearing turning with intrinsic dynamic compensation

NANYANG

SINGAPORE

Turlapati, Sri Harsha, Juhi Gurnani, Mohammad Zaidi Bin Ariffin, Sreekanth Kana, Alvin Hong Yee Wong, Boon Siew Han, and Domenico Campolo. "Identification of Intrinsic Friction and Torque Ripple for a Robotic Joint with Integrated Torque Sensors with Application to Wheel-Bearing Characterization." Sensors (Basel, Switzerland) 24, no. 23 (2024): 7465.

ROBOTICS EDUCATION: FROM DATA TO MODELS

This content was part of a lecture series in MA2011: Mechatronic Systems and Interfacing

Electromechanical model of SEA

voltage ~ torque current ~ speed

Inductance ~ inertia

Then

Stall test

$V - iR - L \frac{di}{dt} - k_V \omega_{enc} = 0$ $k_t i - \omega_m - J \frac{d\omega_m}{dt} - \frac{\tau_L}{N} = 0$

Command: Varying PWM

Armature resistance

Trials

Torque

Constant

Standard

deviation

Relative

standard

Ь

<u> </u>	tau	
orque (Nm		
F 0	50	100
	Time (sec)	

Trials	Resistance	R square	standard	Relative
	Ω		deviation Ω	error (%)
1	6.3457	0.998	0.342	5.39%
2	6.3131	0.998	0.344	5.45%
3	6.3205	0.997	0.349	5.52%
4	6.3117	0.998	0.348	5.51%
5	6.3159	0.998	0.345	5.46%

(Nm\A) $(Nm\backslash A)$ error (%) 1.6357 0.987 7.38% 0.1207 7.57% 1.6353 0.987 0.1238 0.1221 7.45% 1.6388 0.987 1.6423 0.986 0.1253 7.63% 1.6354 0.988 0.1209 7.39% a

Data points taken only when V was constant, i.e., no transients

MOVEMENT SYNTHESIS

I'm also very interested in studying human behavior, but with the aim of reusing discovered strategies in robot *movement synthesis*

GEOMETRIC INVARIANT LEARNING: LEARNING

HUMAN STYLE

Human demonstration of tracing task

Filtering raw data

Turlapati, Sri Harsha, Lyudmila Grigoryeva, Juan-Pablo Ortega, and Domenico Campolo. "Tracing curves in the plane: Geometric-invariant learning from human demonstrations." *PloS one* 19, no. 2 (2024): e0294046.

OPTIMAL ROBOT CONTROL

Key idea – Use haptic costs to perform trajectory optimization.

Manipulation planning

to limited space.

Pushing aside neighbouring books is needed in a crowded bookshelf

book into the shelf.

Modelling the bookshelf as a planar elastic world

Yang, Lin, Sri Harsha Turlapati, Chen Lv, and Domenico Campolo. "Planning for Quasi-Static Manipulation Tasks Via an Intrinsic Haptic metric: A Book Insertion Case Study." IEEE Robotics and Automation Letters (2025).

Simulation v.s. real world

Optimal control force in each iteration

MIXED2REAL FRAMEWORKS

Rather than producing data from real world experiments, instead get humans to interact with a virtual world with haptic feedback to produce similarly useful data, without the risk of damage, high expenditure.

Testing slipping of cube corner on plane

Figure 1: Mechanical interaction rendering.

$$egin{aligned} oldsymbol{f}_i &= k_i (oldsymbol{T}_O \circ oldsymbol{ ilde{c}}_i - oldsymbol{T}_H \circ oldsymbol{ ilde{h}}_i) \ oldsymbol{T} \circ oldsymbol{ ilde{v}} &:= egin{bmatrix} \mathbb{I}_3 & \mathbf{0} \end{bmatrix} oldsymbol{T} egin{bmatrix} ilde{v}^T & \mathbf{1} \end{bmatrix}^T \ oldsymbol{W}_H &= egin{bmatrix} oldsymbol{f}_H \\ oldsymbol{ au}_H \end{bmatrix} = \sum_i egin{bmatrix} oldsymbol{f}_i \\ (oldsymbol{h}_i - oldsymbol{p}_H) imes oldsymbol{f}_i \end{bmatrix} \end{aligned}$$

THANKS TO ALL MY COLLABORATORS!

